Aufgaben- und Auswertungsblatt

"Zusammen mit Rindfleisch kommt die Kombination dann auf einen Wert von immerhin 98. Wer also auf nüchternen Magen Gummibärchen isst, kann laut der Ernährungs-Expertin von den darin enthaltenen Proteinen nichts in körpereigenes Eiweiß umwandeln. Der Grund: In der Gelatine fehlt die essenzielle Aminosäure Tryptophan. Dieser Mangel wird aber mit Rindfleisch ausgeglichen, etwa mit einem Steak – denn verdauen wir verschiedene Lebensmittel gleichzeitig, ergänzen sich die darin enthaltenen Aminosäuren, wodurch die biologische Wertigkeit erhöht wird."

GQ. (2018). Ernährungstipp: Erst Steak, dann Gummibärchen. https://www.gq-magazin.de/leben-alsmann/gesundheit/steak-gummibaerchen-proteine-180531)

Aufgabe

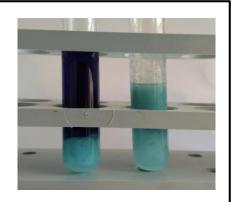
Enthalten Gummibärchen wirklich Proteine? Mit Hilfe der Biuret-Reaktion kann man Proteine nachweisen! Enthalten pflanzliche Lebensmittel auch Proteine?

Ergebnisse

Probe	Beobachtung	Ergebnis + positiver Nachweis - Negativer Nachweis
Denaturiertes Wasser (Blindprobe)		
Gummibärchen		
Steak (Fleisch)		

Versuchsanleitung: Qualitativer Proteinnachweis (Biuret-Probe)

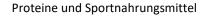
Material


- Reagenzglas
- Reagenzglashalter
- Messpipette
- Natronlauge (10%-ig)
- Kupfersulfatlösung (7%-ig) oder Fehling-I-Lösung
- Verschiedene Lebensmittel zum Testen

Durchführung

Im Reagenzglas werden 3 ml der Probe mit 3 ml Natronlauge versetzt. Anschließend werden 4 Tropfen Kupfersulfat-Lösung hinzugegeben und vermischt.

Bei positivem Nachweis entsteht eine dunkle, violette Färbung (linkes Reagenzglas).



SICHERHEIT

Natronlauge	H290: Kann gegenüber Metallen korrosiv sein. H314: Verursacht schwere Verletzung der Haut und schwere Augenschäden-
Kupfersulfat	H302: Gesundheitsschädlich bei Verschlucken. H315: Verursacht Hautreizungen. H319: Verursacht schwere Augenreizungen. H410: Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

Entsorgung:

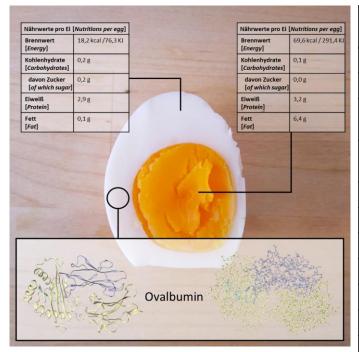
Entsorgung in die anorganischen Abfälle.

Was ist die biologische Wertigkeit?

Aufgabe

- 1) Lies dir die ersten beiden Seiten des wissenschaftlichen Artikels durch.
 - a) Was ist die Biologische Wertigkeit und wie wird diese bestimmt?
 - b) Welche Probleme ergeben sich bei der Bestimmung der Biologischen Wertigkeit?

https://www.ncbi.nlm.ni h.gov/pmc/articles/PMC 1266679/


2) Welche anderen "Scores" gibt es um die Proteinqualität zu berechnen und welche Vorteile haben sie gegenüber der biologischen Wertigkeit?

https://www.biologischewertigkeit.de/

Wertigkeit des Hühnerei

Amino- säuren	Anteil pro 100g	Amino- säuren	Anteil pro 100g
Isoleucin	738 mg	Histidin	262 mg
Leucin	999 mg	Alanin	706 mg
Lysin	706 mg Asparaginsä ure		1158 mg
Methionin	357 mg	Glutaminsäu re	1436 mg
Cystein	246 mg	Glycin	420 mg
Phenylalanin	635 mg	Prolin	468 mg
Tyrosin	468 mg	Serin	912 mg
Threonin	563 mg	Harnsäure	5 mg
Tryptophan	182 mg	Purin	2 mg
Valin	888 mg		
Arginin	706 mg		

Quelle: https://www.vitamine.com/lebensmittel/huehnerei/

Aufgabe

- 1) Über die nebenstehende Webseite kann man sehr leicht verschiedene Wertigkeiten des Hühnereis berechnen.
 - a) Berechne den Chemical Score.
 - b) Berechne Protein Digestibility-Corrected Amino Acid Score
 - c) Berechne den Digestible Indispensable Amino Acid Score.
- 2) Was ist die biologische Wertigkeit von Hühnerei und wie unterscheiden sich die berechneten Scores von dieser?
- 3) Wie unterscheiden sich die drei Scores untereinander?

https://www.biologischewertigkeit.de/chemicalscore.php

Chemical Score:	
Protein Digestibility-Corrected Amino Acid Score:	
Digestible Indispensable Amino Acid Score:	
Biologische Wertigkeit:	